Abstract Submitted for the 4CF07 Meeting of The American Physical Society

Fragment Angular Anisotropies for Magic and Non-Magic Nuclei¹ A.N. BEHKAMI, S. MAROOFI, A. ESMAILIPOUR, S. RASOOLI, Mahabad Azad University — Fission fragment angular distributions have been studied for $^{239}Pu(n, f)$ reaction at several neutron energies. Theoretical calculations have been utilized to determine the variance K_0^2 at each bombarding energy from the observed angular anisotropies. The values of K_0^2 show sharp rise from a value of 5-6 to about 13 for higher neutron energies. From the position of one of the breaks in the K_0^2 value, the magnitude of the pairing gap 2Δ in the highly deformed transition nucleus ^{240}Pu is estimated to be 2.4 MeV. Fission fragment angular anisotropies from changed particle fission of ${}^{208}Pb$, ${}^{209}Bi$, ${}^{235}U$ and ${}^{238}U$ at laboratory energy of 43.0 MeV have also been analyzed using the traditional transition state model. In all these calculations, optical model transmission coefficients with spin-orbit interaction have been used. In the case of magic nuclei, ^{208}Pb and ^{209}Bi it is found that the deduced values of K_0^2 are very small as compared to their corresponding values for ^{235}U and ^{238}U nuclei. This interpreted as due to shell structure, since significant shell and pairing effects appear for the magic nuclei ${}^{208}Pb$ and ${}^{209}Bi$.

¹Supported by the research council of Mahabad Azad University.

A. N. Behkami Mahabad Azad University

Date submitted: 10 Sep 2007

Electronic form version 1.4