Abstract Submitted for the 4CF07 Meeting of The American Physical Society

Fluxon relaxation in superconductors KURT STANGEL, RALPH CHAMBERLIN, NATHAN NEWMAN, Arizona State University, JIANYI JIANG, Florida State University, BRIAN MOECKLY, Superconductor Technologies Incorporated — Using a high-speed SQUID magnetometer, we measure the relaxation of magnetic flux quanta (fluxons) in superconductors as a function of time after removing an applied field. When relatively small fields are removed, the relaxation is accurately described by a logarithmic time dependence, consistent with the Anderson-Kim theory for fluxon motion. However, when larger fields are removed, we see faster fluxon motion at short times and slower relaxation at long times, similar to a collective pinning model. This non-logarithmic relaxation often appears with a saturation in the relaxation slope, which may come from a crossover to strongly interacting fluxons when their average separation becomes less than the London penetration depth.

Ralph Chamberlin Arizona State University

Date submitted: 14 Sep 2007

Electronic form version 1.4