Abstract Submitted for the 4CF09 Meeting of The American Physical Society

Characterization of Manufactured Binding Sites in BPTI Using Laser Polarized ¹²⁹Xe¹ ZAYD MA, GEOFF SCHRANK, BRIAN SAAM, Department of Physics University of Utah, DAVID GOLDENBERG, Department of Biology University of Utah — We measure the NMR chemical shift of laser polarized 129 Xe in wild type, Y35G, Y23A, and F45S BPTI (Bovine Pancreatic Trypsin Inhibitor) solutions of varying concentration. Our technique uses 129 Xe in unprecedented low concentrations as a biosensor. The results provide structural information concerning the aforementioned proteins [2,3]. We use a flow-through polarizer that outputs 129 Xe hyperpolarized to $\sim 10\%$. Hyperpolarized gas coupled with a high resolution NMR spectrometer, enables us to measure sub-ppm chemical shifts at very low Xe and protein concentrations. In accordance with the fast exchange regime, we observe a single resonance that is chemically shifted as a function of protein concentration. Consistent with a rigid lattice and a manufactured binding site, Y23A and F45S demonstrate strong binding relative to wild type and Y35G. Wild type is believed not to have a specific binding site. Other experiments on Y35G have demonstrated a hydrophobic cavity and extensive solution-phase motion [1]. Weak binding supports the notion that a small fraction of solution-phase Y35G is in a conformation such that the cavity is accessible to Xe. [1] S. A. Beeser, J. Mol. Biol., 269, 154-164v [2] W. M. Hanson et al., J. Mol. Biol. 2007, 366, 230-243 [3] A. T. Danishefsky et al., Protein Sci. 1993, 2, 577-587

¹Work Supported by NSF grant # PHY-0855482 and UURF.

Zayd Ma Department of Physics University of Utah

Date submitted: 22 Sep 2009

Electronic form version 1.4