Abstract Submitted
for the 4CF09 Meeting of The American Physical Society

Finding probability distributions for electric field gradient components with inhomogeneous broadening in perturbed angular correlation spectroscopy ${ }^{1}$ TYLER PARK, MIKE ADAMS, AUSTIN BUNKER, JEFFERY HODGES, MICHAEL STUFFLEBEAM, WILLIAM EVENSON², PHIL MATHESON, Utah Valley University, MATTHEW ZACATE, Northern Kentucky University - Materials contain defects, which affect crystal properties such as damping of the correlation signal, $G_{2}(t)$, in time and broadening of the frequency spectrum in perturbed angular correlation (PAC) experiments. We attribute this inhomogeneous broadening (IHB) to the random static defects that produce a distribution of electric field gradients (EFGs). Our goal is to find a relationship between the amount of broadening and the concentration of defects. After simulating the EFGs from random configurations of defects, we map our results from the $V_{z z}-V_{x x}$ plane to a coordinate system optimized for the EFG distribution through a Czjzek transformation, followed by a conformal mapping. From histograms in this space, we can define probability distribution functions with parameters that vary according to defect concentration. This allows us to calculate the broadened $G_{2}(t)$ spectrum for any concentration, and, in reverse, identify concentrations given a broadened $G_{2}(t)$ spectrum.
${ }^{1}$ Work supported in part by NSF grant DMR 06-06006 (Metals Program). ${ }^{2}$ retired

Phil Matheson
Utah Valley University

