Thermal and electrical transport properties of UCu$_{4+x}$Al$_{8-x}$

FARZANA NASREENT, New Mexico State University, MILTON TORIKACHVILLI, San Diego State University, KARUNAKAR KOTHAPALLI, New Mexico State University, VIVIEN ZAPF, NHMFL Pulse Field Facility-LANL, HEINZ NAKOTTE, New Mexico State University — The UCu$_{4+x}$Al$_{8-x}$ family crystallizes in the tetragonal ThMn$_{12}$-type structure in the range from $0.1 \leq x \leq 1.95$. It has been reported that the Cu-poor compounds show antiferromagnetic long-range order, followed by a transition at $x=1.15$ to a heavy fermion behavior. We report on the results of thermal conductivity and the Seebeck coefficient as a function of temperature (1.8-300K). Thermal conductivity data are consistent with previously published electrical resistivity data. The Seebeck coefficient measurements, S, confirm the peaks at T_N for the antiferromagnetic compounds. We also measured electrical resistivity as function of very low temperature from 75mK to 4K and in magnetic field up to 6Tesla for UCu$_6$Al$_2$, UCu$_5.75$Al$_6.25$, UCu$_5.5$Al$_6.5$ and UCu$_5.25$Al$_6.75$. UCu$_5.75$Al$_6.25$ which was reported as non-Fermi liquid (NFL) compound shows quantum critical point induced by magnetic field. These results provide some insight about the underlying mechanisms to the apparent NFL behavior in UCu$_5.75$Al$_6.25$ compound.

Farzana Nasreen
New Mexico State University

Date submitted: 28 Sep 2009