Abstract Submitted for the 4CF10 Meeting of The American Physical Society

Relaxation rates of low-field gas-phase ¹²⁹Xe storage cells MARK LIMES, BRIAN SAAM¹, University of Utah — A study of longitudinal nuclear relaxation rates T_1 of ¹²⁹Xe and Xe-N₂ mixtures in a magnetic field of 3.8 mT is presented. In this regime, intrinsic spin relaxation is dominated by the intramolecular spin-rotation interaction due to persistent xenon dimers, a mechanism that can be quelled by introducing large amounts of N₂ into the storage cell. Extrinsic spin relaxation is dominated by the wall-relaxation rate, which is the primary quantity of interest for the various low-field storage cells and coatings that we have tested. Previous group work has shown that extremely long gas-phase relaxation times T_1 can be obtained, but only at large magnetic fields and low xenon densities. The current work is motivated by the practical benefits of retaining hyperpolarized ¹²⁹Xe for extended periods of time in a small magnetic field.

 $^{1}\mathrm{PI}$

Mark Limes University of Utah

Date submitted: 10 Sep 2010

Electronic form version 1.4