A superradiant laser with < 1 intracavity photon

JAMES K. THOMPSON, JILA, NIST and Department of Physics, University of Colorado, Boulder, CO 80309

We will describe a recently demonstrated laser-cooled Raman laser that operates deep into the superradiant or bad-cavity regime in which the gain medium (i.e. the atoms) acts as the primary reservoir of phase information [1]. The system operates with < 1 average intracavity photons and with an extremely small effective excited state decay linewidth < 1 Hz. This model system demonstrates key physics for future active optical clocks (similar to masers) that may achieve frequency linewidths approaching 1 mHz due to 3 to 5 orders of magnitude reduced sensitivity to thermal mirror noise. For scale, a 1 mHz linewidth laser would have a coherence length spanning the distance from the earth to the sun. The measured linewidth of our model system demonstrates that a superradiant laser’s frequency linewidth may be below the single atom dephasing and natural linewidths, greatly relaxing experimental requirements on atomic coherence.


This work was supported by NSF PFC, NIST, ARO, and DARPA QUASAR.