Modeling Condensation, Hydro- and Pepto-affinity of Surfaces in Medical Implant Devices and Surgical Lenses: Effect of Blood Proteins

ROSS BENNETT-KENNETT, NICOLE HERBOTS, ASHLEE MURPHY, DAVID SELL, TYLER KUTZ, SOPHIA BENITEZ, AJIYA ACHARYA, BRETTHUGHES, CLARIZZA WATSON, Arizona State University, ERIC CULBERTSON, University of Michigan, CLIVE SELL, H. KWONG, Arizona Vitro-retinal consultants — Surgical lenses in laparoscopes and arthroscopes “fog” during surgery. Fogging increases by up to 40% surgery duration, infection rates, and scarring due to exposure from repeated scopes withdrawal for cleaning. Modeling nucleation on surfaces shows that 2-D layer-by-layer condensation maintains transparency while 3-D droplets refract at gas/fluid interfaces leading to opacity or “fogging.” This ProteinKnoxTM model for lenses made from bio-compatible polymers, and silica led us to a nano-scale molecular mesh applied as a bio-identical emulsion. ProteinKnoxTM[1-5] meets a 100% success rate in eliminating fogging for up to 240 minutes over 300 experiments. Twenty surgical trials in the OR yield a success rate of 90%, with loss of vision due to the presence of blood or blood proteins, not fogging. We studied the common blood protein, heparin, which prevents coagulation, with the ProteinKnoxTM model. Heparin behaves like H2O on hydrophobic surfaces. It does not prevent fogging nor interferes with 2-D condensation. Next, we investigated fibrinogen as agonist agent because it causes coagulation. Fibrinogen applied to various surfaces in emulsions prepared in accordance with the ProteinKnoxTM model can prevent not only