Abstract Submitted for the 4CF13 Meeting of The American Physical Society

Physics of Superluminal Communication and Estakhr Relativistic Omega Factor AHMAD REZA ESTAKHR, Researcher — Superluminal communication is a process by which one might send information at FTL (Faster Than Light). I try to developed this idea in detail and with mathematical rigor. The velocity of particle (information) is represented by the group velocity v_g . if $v_g \ge c$ then $\gamma = \frac{-i}{\sqrt{\frac{v_g^2}{c^2}-1}} = -i\Omega$ that which means γ (Lorentz factor) is an imaginary number (at $v_g \ge c$), that can be written as a real number multiplied by imaginary unit *i*, which is defined by its property $i^2 = -1$. and this is $\Omega = \frac{1}{\sqrt{\frac{v_g^2}{c^2}-1}}$ Estakhr Omega factor. then kinetic energy of FTL particle is Complex number $k = E - E_o = -E_o(i\Omega + 1)$. we still use Lorentz Symmetry, $\gamma^2 - \gamma^2\beta^2 = 1$ which means faster than light is particle-like, $i^2\Omega^2 - i^2\Omega^2\beta^2 = \Omega^2\beta^2 - \Omega^2 = 1$. The phase velocity can be found from $v_{ph} = \frac{c^2}{v_g}$, this shows that the phase velocity of FTL particle is less than the speed of light $v_{ph} = \frac{c^2}{v_g \ge c} \le c$. which means that speed of material particles can exceed *c* but finally, the product of the group and phase velocities is equal to c^2 , in general: if $v_g \le c$ then $v_{ph} \ge c$, if $v_g \ge c$ then $v_{ph} \le c$, if $v_g = c$ then $v_{ph} = c$ i.e., $v_q v_{ph} = c^2$.

> Ahmad Reza Estakhr Researcher

Date submitted: 09 Sep 2013

Electronic form version 1.4