Abstract Submitted for the 4CF15 Meeting of The American Physical Society

Tuning Magnetism of Zirconium Disulfide Nanoribbons by Strain¹ MAHMOUD HAMMOURI, IGOR VASILIEV, New Mexico State University — Monolayer transition metal dichalcogenides have recently attracted considerable attention due to their unusual physical properties and potential applications in nanoscale electronic devices. We carried out *ab initio* density functional calculations to study the electronic and magnetic properties of strained ZrS₂ nanoribbons. Our calculations demonstrated that ZrS₂ nanoribbons without edge passivation were non-magnetic. In contrast, we found that ZrS₂ nanoribbons passivated with hydrogen atoms could switch between the regimes of magnetic and non-magnetic behaviour. Our study showed that edge-passivated armchair ZrS₂ nanoribbons were magnetic under applied strain up to 6%, whereas zigzag ZrS₂ nanoribbons were magnetic under applied strain between 7% and 12%. The results of our calculations suggested the possibility of tuning the magnetism of ZrS₂ nanoribbons by changing the applied strain.

¹Supported by NMSU GREG Award and by NSF CHE-1112388

MAHMOUD HAMMOURI New Mexico State University

Date submitted: 10 Sep 2015 Electronic form version 1.4