Aberration-corrected STEM of Cross-sectional View of Core-shell Nanowires1 JIA XU, School for Engineering of Matter, Transport and Energy, Arizona State University, JINGYUE LIU, Departments of Physics, Arizona State University — Aberration-corrected scanning transmission electron microscopy (AC-STEM) technique was used to investigate the interfacial structures of core-shell nanowires (NWs). The ultramicrotome technique was used to prepare cross-sectional samples of ZnO-Bi\textsubscript{2}O\textsubscript{3} core-shell NWs. Thin layers Bi\textsubscript{2}O\textsubscript{3} epitaxially grew onto the six \{11-20\} but not the six \{10-10\} nanoscale facets. Such selective growth can be explained by the differences in the interfacial energy between the two oxide phases. AC-STEM further revealed the interfacial reconstruction of the Bi\textsubscript{2}O\textsubscript{3} layers, a consequence of minimizing the interfacial energy and to make the epilayer growth of the Bi\textsubscript{2}O\textsubscript{3} possible. A model was proposed to understand the growth processes of Bi-containing phases onto ZnO NWs.

1Supported by the College of Liberal Arts and Sciences of Arizona State University

Jingyue Liu
Departments of Physics, Arizona State University

Date submitted: 11 Sep 2015