Abstract Submitted for the 4CS19 Meeting of The American Physical Society

Comparative Study of Surface Energy Engineering for low temperature wafer bonding on $LiTaO_3$ and $LiNbO_3$ to Si and SiO_2 MO-HAMMED SAHAL, BRIAN R BAKER, NICOLE HERBOTS, NIKHIL C SURESH, SHAURYA KHANNA, AMBER A CHOW, SAAKETH NARAYAN, AASHI R GURIJALA, SUKESH RAM, Arizona State University, NICOLE HERBOTS RE-SEARCH GROUP TEAM — Surface engineering is needed to directly bond wafers of $LiTaO_3$ (100) and $LiNbO_3$ (100), Si (100) and SiO_2 (100). Surface Energy Engineering (SEE) can be designed using the Van Oss-Chaudhury-Good for wafer mapping of three surface interactions, namely van der Waals interactions, and interactions with electron donors and acceptors. Three liquid contact angle analysis (3LCAATM) was developed for NanobondingTM using several drops for each of liquids (Water, α -bromo naphthalene, glycerin) for contact angle measurements. The DROPTM algorithm is a fast, accurate way to extract contact angles. Surface engineered hydrophobic LiTaO₃ (100) bonding to hydrophilic Si (100) is attempted for electron donor-acceptor low temperature direct bonding. Hydrophilic-hydrophilic hydrogen bonding at low temperature is found to require hydrophilic LiTaO₃ and LiNbO₃.

> Mohammed Sahal Arizona State University

Date submitted: 19 Sep 2019

Electronic form version 1.4