4CS20-2020-000109

Abstract for an Invited Paper for the 4CS20 Meeting of the American Physical Society

Exploring the Rich Physics of Triangular Lattice Antiferromagnets with Neutron Scattering BENJAMIN FRANDSEN, Brigham Young University

In geometrically frustrated magnets, the spatial arrangement of magnetic moments on a lattice prevents competing magnetic interactions from being simultaneously satisfied, often leading to exotic magnetic behavior. The canonical example of geometrical frustration consists of antiferromagnetically coupled spins populating a triangular lattice. Here, we explore the compound $TmMgGaO_4$, which hosts Ising-like Tm^{3+} magnetic moments on a perfect triangular lattice. Using magnetic pair distribution function analysis of neutron scattering data, we study the short-range magnetic correlations present at low temperatures. The results suggest a surprising connection to a topological Kosterlitz-Thouless transition at low temperature, showcasing the rich behavior observed in geometrically frustrated magnets.