Abstract Submitted for the 4CS20 Meeting of The American Physical Society

Validating Surface Energy Measured by Three Liquid Contact Angle Analysis with Computed Gibbs Energy for LiNbO_3/α -Quartz SiO₂ for Direct Wafer Bonding ABBIE ELISON, MOHAMMED SAHAL, SHEFALI PRAKASH, SRIVATSAN SWAMINATHAN, RILEY RANE, BRIAN BAKER, JA-COB KINTZ, ALIYA YANO, SAAKETH NARAYAN, ALEX BRIMHALL, LAU-REN PUGLISI, DR. ROBERT CULBERTSON, DR. NICOLE HERBOTS, Arizona State University, Dept. of Physics, PROF HERBOTS' NANO-BONDING RESEARCH TEAM — LiNbO₃ is a ferro-electric with the most significant electrooptical, piezo-electric properties, and a near perfect linear response. Hence, LiNbO₃ is an ideal material to integrate piezoelectrics monolithically to Si. But lattice and thermal expansion mismatches between $LiNbO_3$ and Si/SiO_2 are incompatible with hetero-epitaxy and Direct Wafer Bonding (DWB). This work investigates DWB at RT via Nano-Bonding^{TM, 1} (NB). NB nucleates bonding inter-phases via complementary 2D- Precursor Phases (2D- PP) instead of thermal activation. 2D-PP relies on Surface Energy Engineering (SEE), which characterizes and then modifies hydroaffinity and surface energy into far-from-equilibrium states. SEE finds that ΔGs for interaction between $LiNbO_3$ and Si/SiO_2 are both positive and do not favor NB. Hence, SEE on LiNbO₃ and Si/SiO₂ needs to change ΔG to negative at RT. Experimental results show that SEE of ?-quartz SiO₂ and LiNbO₃ yield NB at RT.¹ Herbots et al. US Pat. 6613677 (2003), 7,851,365 (2010), 9,018,077 (2015), 9,589,801 (2017), and pending (2020)

> Abbie Elison Arizona State University, Dept. of Physics

Date submitted: 29 Sep 2020

Electronic form version 1.4