Abstract Submitted for the 4CS20 Meeting of The American Physical Society

Role of Atomic and Electronic Structure of LiTaO₃ and LiNbO₃ Piezoelectric for Direct NanoBonding with Si And SiO₂: Comparison of Measured Surface Energies with Computed ΔG and Infra-Red Absorption MOHAMMED SAHAL, ABBIE ELISON, SHEFALI PRAKASH, SRI-VATSAN SWAMINATHAN, RILEY RANE, BRIAN BAKER, JACOB KINTZ, ALIYA YANO, SAAKETH NARAYAN, ALEX BRIMHALL, LAUREN PUGLISI. ROBERT CULBERTSON, NICOLE HERBOTS, Arizona State University, Dept. of Physics, PROF. N. HERBOTS NANOBONDING TEAM — Piezoelectric LiTaO₃/LiNbO₃/Si hetero-structures have two major issues: mismatch of crystal structure, lattice constants and especially coefficient of thermal expansion, by an order of magnitude. Hence, this work uses NanoBondingTM [1] to directly bond LiTaO₃ to Si and LiNbO₃ to SiO₂ via Surface Energy Engineering (SEE). SEE modifies in synergy surface hydro-affinity (H-A) and Surface Energy (SE) to far-fromequilibrium states likely to react in air at RT. HA and SE are measured via Three Liquid Contact Angle Analysis in air. SEs are 41 2 mJ/m² for LiTaO₃ and 39 2.5 mJ/m^2 for LiNbO₃, thus close. SE is compared to computed ΔGs of interaction for $LiTaO_3$, -104 mJ/m², and $LiNbO_3$, -115 mJ/m², in 25% H_R. Thus, ΔGs favor water adsorption with negative values, -104 mJ/m^2 and -115 mJ/m^2 respectively. Negative ΔG can favor spontaneous bonding of LiTaO₃ to Si and hydrophobic LiNbO₃ to hydrophilic SiO₂. Experimentally, SEE is needed to activate bonding of LiTaO₃ to Si, and LiNbO₃ to SiO₂. [1] Herbots, et al. U.S. Pat. # 9,018,077 (2015), 9,589,801(2017), pend. (2020)

> Mohammed Sahal Arizona State University

Date submitted: 15 Oct 2020

Electronic form version 1.4