4CS20-2020-000204

Abstract for an Invited Paper for the 4CS20 Meeting of the American Physical Society

Search for Lepton Number Violation and Neutrino Nature with Neutrinoless Double Beta Decay WILLIAM FAIRBANK, Colorado State University

Despite nine decades of research on neutrinos, their fundamental nature remains a mystery. Two possibilities exist: (1) Dirac neutrinos, in which neutrinos and anti-neutrinos are different particles and (2) Majorana neutrinos, in which neutrinos and anti-neutrinos are the same particle. In the latter case, lepton number would have no meaning for neutrinos, and lepton-number nonconserving interactions could occur. One such process is neutrinoless double beta decay (0nbb), in which two electrons and no antineutrinos(Δ L=2) are emitted. If 0nbb decay is discovered, then neutrinos must be Majorana. I will give an overview the leading experiments giving half-life limits for 0nbb decay of up to 10²6 years and proposals for next-generation experiments with half-life sensitivity of 10²8 years. Of personal interest is the possibility of observing the $Ba^{1}36$ daughter of one $Xe^{1}36$ 0nbb decay using single atom or single molecule imaging, which may allow even higher sensitivity to be achieved.