Direct quantitative observation of a negative-parity intruder state in 28Ne1 P.G. HANSEN, J.R. TERRY, D. BAZIN, B.A. BROWN, C.M. CAMPBELL, J.A. CHURCH, J.M. COOK, A.D. DAVIES, D.C. DINCA, J. ENDERS, A. GADE, T. GLASMACHER, J.L. LECOEY, W.F. MUELLER, H. OLLIVER, B.M. SHERRILL, K. YONEDA, National Superconducting Cyclotron Laboratory, Michigan State University, J.A. TOSTEVIN, Dept. of Physics, University of Surrey, Guildford, UK — We present results for the neutron knockout from a 70 MeV beam of 28Ne interacting with a 9Be target. The projectile residues were detected in the high-resolution S-800 spectrograph and excited levels were identified via gamma-ray coincidences observed with the array of segmented germanium detectors SeGA. Events not coincident with gamma rays amounted to 38%. These were predominantly associated with a momentum distribution with a clear $l=3$ shape corresponding to a spectroscopic factor of close to unity, so that, on the average, at least one of the 18 neutrons in the projectile must be in an $f_{7/2}$ orbital. This confirms for the first time the strong presence of f-shell intruders in the ground state predicted for this nucleus in the Monte-Carlo shell-model calculations by Utsuno et al., Phys. Rev. C 60, 054315 (1999).

1Work supported by NSF grants PHY-0110253, PHY-9875122, PHY-0244453, and PHY-0342281.