Abstract Submitted for the APR05 Meeting of The American Physical Society

Study of ηN scattering length by means of $(p, {}^{3}\text{He})$ nuclear reactions leading to the formation of η -mesic nucleus Q. HAIDER, Fordham University, Bronx, N.Y. 10458, L.C. LIU, Los Alamos National Laboratory, N.M. 87545 — Because ηN scattering length is not directly measurable, its value is strongly model dependent¹. A good knowledge of this scattering length is, however, valuable to the modeling of various hadronic interactions where η is produced. Since low energy ηN interaction is attractive and η -mesic nuclei can exist², we suggest to use the $p + A \rightarrow^{3} \text{He} + (A - 2)_{\eta}$ reaction to probe the ηN scattering length. In our model, the η is first produced via $p + d \rightarrow \eta + {}^{3}\text{He}$ reaction, and then captured by the residual nucleus of nucleon number A-2. As a stronger scattering length allows η to be bound onto lighter nuclei, the smallest value of (A-2) for which η -nucleus bound states can exist will set an upper limit for the scattering length. Our choice of having ³He in the final state is for the purpose of significantly reducing background events. This suggestion will soon be implemented in an experiment at Juelich, Germany. We will present our predictions for ${}^{16}O$ and ${}^{12}C$ as target nuclei, leading to ${}^{14}N_n$ and ${}^{10}B_n$, respectively. Sensitivity of the η -mesic nucleus formation to the ηN scattering length will also be discussed.

¹ Q. Haider and L.C. Liu, Phys. Rev. C 66, 045208 (2002).

² Q. Haider and L.C. Liu, Phys. Lett. **B** 172, 257 (1986).

Quamrul Haider Fordham University

Date submitted: 25 Jan 2005

Electronic form version 1.4