Abstract Submitted for the APR05 Meeting of The American Physical Society 19 F alpha widths from 15 N(α, α) 15 N data and the 18 F+p reaction rates 1 DAN BARDAYAN, ORNL, RAY KOZUB, Tenn. Tech. Univ., MICHAEL SMITH, ORNL — The rates of the 18 F(p, α) 15 O and 18 F(p, γ) 19 Ne reactions are important for understanding production of the long-lived radioisotope 18 F in novae and the transition to heavy- element production in X-ray bursts. A knowledge of the alpha widths of numerous 19 Ne levels is critical for calculating these rates. These widths are generally not known and must be extrapolated from information on the isospin mirror nucleus 19 F. Much of this information comes from a measurement of the 15 N(α, α) 15 N reaction [1], and we have reanalyzed this data using a multilevel R-matrix approach to determine properties of resonances in the astrophysically-important range $E_x = 6.4 - 7.5$ MeV. We find the energies and widths of broad levels to be different than previously reported. We have also set upper limits on the widths of postulated $3/2^+$ resonances, analogs of which are important for the 18 F+p reaction rates. The method and results will be presented. [1] H. Smotrich et al., Phys. Rev. **122**, 232 (1961). ¹Sponsored, in part, by the LDRD Program of ORNL, managed by UT-Battelle, LLC, for the U.S. DOE under Contract No. DE-AC05-00OR22725. Dan Bardayan Oak Ridge National Lab Date submitted: 05 Jan 2005 Electronic form version 1.4