Abstract Submitted for the APR05 Meeting of The American Physical Society

Centrality Dependence of Bulk Fireball Properties at RHIC JO-HANN RAFELSKI, University of Arizona, JEAN LETESSIER, LPTHE-Paris 7, GIORGIO TORRIERI, McGill University — We explore the centrality dependence of properties of the dense hadronic matter created in $\sqrt{s_{NN}} = 200 \,\text{GeV}$ Au–Au collisions at RHIC. Using the statistical hadronization model we fit particle yields known for 11 PHENIX centrality bins and using STAR yields for ϕ and K^* . We present the resulting centrality dependence of model parameters $T, \mu_{\rm B}, \mu_{\rm S}, \gamma_s$, the rapidity yields of physical quantities and the physical properties of bulk matter at hadronization. The most remarkable finding of this study is the recognition that the bulk properties **P** pressure, ϵ energy density, σ of the hadronizing dense matter fireball created at RHIC do not depend on the size of the system for A20, where A is the number of reaction participants. For most central collisions the strangeness per entropy yield $s/S = (2.9 \pm 0.3)10^{-3}$ is more than 4 times enhanced compared to the AGS energy scale. For the most peripheral reactions this ratio is $s/S = (1.9 \pm 0.3) 10^{-3}$ which shows the influence of the fireball expansion dynamics on production of strangeness. We see this in the steady rise of strangeness occupancy γ_s with centrality. The baryon end entropy density per unit rapidity grows also with centrality and we find in most central 5% collisions $d(B-\overline{B})/dy = 14 \pm 2$, the strangeness yield $ds/dy = 135 \pm 10$ and the entropy yield $dS/dy = 4900 \pm 400$.

> Johann Rafelski University of Arizona

Date submitted: 12 Jan 2005

Electronic form version 1.4