APR05-2005-000244

Abstract for an Invited Paper for the APR05 Meeting of the American Physical Society

Fundamental Symmetries Probed by Precision Nuclear Mass Measurements at ISOLTRAP

GEORG BOLLEN, Michigan State University, National Superconducting Cyclotron Laboratory, East Lansing, MI, USA

Mass measurements on rare isotopes can play an important role in testing the nature of fundamental interactions. Precise mass values together with decay data are required for critical tests of the conserved vector current (CVC) hypothesis and the standard model. Substantial progress in Penning trap mass spectrometry has made this technique the best choice for precision measurements on rare isotopes, by providing high accuracy and sensitivity even for short-lived nuclides. The pioneering facility in this field is ISOLTRAP at ISOLDE/CERN. ISOLTRAP is a mass spectrometer capable to determine nuclear binding energies with an uncertainty of 10^{-8} on nuclides that are produced with yields as low as a few 100 ions/s and at half-lives well below 100 ms. It is used for mass measurements relevant for a better understanding of nuclear structure and the nucleosynthesis of the elements. It is also used for the determination of masses that are important for the test of CVC, the unitary of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, and for putting constrains on the existence of scalars currents. Measurements along this line include 74 Rb (T_{1/2}=65 ms), which is the shortest-lived nuclide studied in a Penning trap. The Q_{EC} values of ⁷⁴Rb, determined with a precision of $6 \cdot 10^{-8}$, serves as a test of CVC or of related theoretical corrections [1]. Masses of ³²Ar and ³³Ar have been determined with uncertainties of $6.0 \cdot 10^8$ and $1.4 \cdot 10^{-8}$ [2]. The improved mass for 32 Ar helps to provide a better constraint on scalar contributions to the weak interaction and both argon data serve as the most stringent test of isobaric multiplet mass equation IMME. ³⁴Ar, another CVC test candidate, has been studied with an uncertainty of $1.1 \cdot 10^8$ ($\delta m = 0.41$ keV). Similar precision has been achieved for ²²Mg and neighboring ²¹Na and ²²Na [4]. The importance of these results is twofold: First, an Ft value has been obtained for the super-allowed β decay of ²²Mg to further test the CVC hypothesis. Second, the resonance energy for the astrophysically relevant ²¹Na proton-capture reaction has been independently determined. [1] A. Kellerbauer et al., Phys. Rev. Lett. 93 (2004) 072502 [2] K. Blaum et al., Phys. Rev. Lett. 91 (2003) 260801 [3] F. Herfurth et al, Eur. Phys. J. A15 (2002) 17 [4] M. Mukherjee et al., Phys. Rev. Lett. 93 (2004) 150801