APR05-2005-000265

Abstract for an Invited Paper for the APR05 Meeting of the American Physical Society

Measurements of the Longitudinal to Transverse Cross Section Ratio and Separated Structure Functions on Nucleons and Nuclei CYNTHIA KEPPEL, Hampton U. / Jefferson Lab

The ratio R of longitudinal (L) to transverse (T) electron scattering off the nucleon is a fundamental quantity that should be measured with the best possible accuracy. Recent data from experiments in Hall C at Jefferson Lab have measured precision inclusive elastic, quasi-elastic, resonance, and deep inelastic cross sections from nucleons and nuclei over the four-momentum transfer range $0.05 < Q^2 < 5.50 \text{ GeV}^2$. This new data has been used to accurately perform over 200 Rosenbluth- type L/T separations. These separations have allowed for the longitudinal component of the electron-nucleon(us) cross section to be extracted, for the first time in many cases, and for the inelastic structure functions F_1 , F_2 , and F_L to be obtained. One surprising observation is that R is large at the larger W, low Q values, where it is typically assumed to go to zero. Other physics issues addressed by the new data include: the nuclear dependence of the longitudinal structure function; quark-hadron duality; structure function moment extractions; a search for nuclear pions; improved measurements of F_2 ; and modeling the vector contribution to neutrino cross sections.