Alternate derivation of the Ginocchio-Haxton relation \([(2j - 3)/6]\)

ALBERTO ESCUDEROS, LARRY ZAMICK, Rutgers University — We want the number of states with total angular momentum \(J = j\) for 3 identical particles (e.g. neutrons) in a \(j\) shell. We form states \(M_1 > M_2 > M_3\) with total \(M = M_1 + M_2 + M_3\). Consider first all states with \(M = j + 1\). Next form states by lowering \(M_3\) by one. All such states exist because the lowest value of \(M_3\) is \((j + 1) - j - (j - 1) = -j + 2\). So far we have the total number of states with \(J > j\) and \(M = j\). The additional states with \(M = j\) are the states with \(J = j\). These additional states have the structure \(M_1, M_2, M_2 - 1\) because if we try to raise \(M_3\) we get a state not allowed by the Pauli principle, namely \(M_1, M_2, M_2\). The possible values of \(M_1, M_2\) are respectively \(j - 2n\) and \(1/2 + n\), where \(n = 0, 1, 2 \cdots\). The total number of \(J = j\) states is \(N = \bar{n} + 1\) (with \(\bar{n} = n_{\text{max}}\)), while \(\bar{n}\) itself is the number of seniority 3 states. The condition \(M_1 > M_2\) leads to \(\bar{n} < (2j - 1)/6\) or \(N < (2j + 5)/6\). This is our main result. It is easy to show that this is the same as the G-H relation\(^1\) (see also Talmi’s 1993 book) \(\bar{n} = [(2j - 3)/6]\), where \([\]\) means the largest integer. Since \(2j\) is an odd integer, \((2j - 1)/6\) is either \(I, I - 1/3\) or \(I - 2/3\), where \(I\) is an integer. If the value is \(I\), then \(\bar{n} = [(2j - 3)/6] = [I - 1/3] = I - 1\). It is easy to show agreement in the other 2 cases as well. The number of \(J = j\) states for the 3-particle system is equal to the number of \(J = 0\) states for a 4-particle system.