Abstract Submitted for the APR05 Meeting of The American Physical Society

Alternate derivation of the Ginocchio-Haxton relation [(2j-3)/6]ALBERTO ESCUDEROS, LARRY ZAMICK, Rutgers University — We want the number of states with total angular momentum J = j for 3 identical particles (e.g. neutrons) in a j shell. We form states $M_1 > M_2 > M_3$ with total $M = M_1 + M_2 + M_3$. Consider first all states with M = j+1. Next form states by lowering M_3 by one. All such states exist because the lowest value of M_3 is (j+1) - j - (j-1) = -j+2. So far we have the total number of states with J > j and M = j. The additional states with M = j are the states with J = j. These additional states have the structure $M_1, M_2, M_2 - 1$ because if we try to raise M_3 we get a state not allowed by the Pauli principle, namely M_1, M_2, M_2 . The possible values of M_1, M_2 are respectively j - 2nand 1/2 + n, where $n = 0, 1, 2 \cdots$. The total number of J = j states is $N = \bar{n} + 1$ (with $\bar{n} = n_{\text{max}}$), while \bar{n} itself is the number of seniority 3 states. The condition $M_1 > M_2$ leads to $\bar{n} < (2j-1)/6$ or N < (2j+5)/6. This is our main result. It is easy to show that this is the same as the G-H relation¹ (see also Talmi's 1993 book) $\bar{n} = [(2j-3)/6]$, where [] means the largest integer. Since 2j is an odd integer, (2j-1)/6 is either I, I-1/3 or I-2/3, where I is an integer. If the value is I, then $\bar{n} = [(2j-3)/6] = [I-1/3] = I-1$. It is easy to show agreement in the other 2 cases as well. The number of J = j states for the 3-particle system is equal to the number of J = 0 states for a 4-particle system.

¹J.N. Ginocchio and W.C. Haxton, *Symmetries in Science VI*, ed. by B. Gruber and M Ramek, Plenum, New York (1993)

Larry Zamick Rutgers U.

Date submitted: 13 Jan 2005

Electronic form version 1.4