Abstract Submitted
for the APR05 Meeting of
The American Physical Society

Ab Initio Study of the Level Ordering Anomaly in 11Be

CHRISTIAN FORSSEN, PETR NAVRATIL, W. ERICH ORMAND, LLNL, ETIENNE CAURIER, IRES CNRS Strasbourg — We are presenting the first ab initio structure investigation of the loosely bound 11Be nucleus, together with a study of the surrounding, stable isotopes 9Be, 11B and 13C. The nuclear structure of these isotopes is particularly interesting due to the appearance of a parity-inverted ground state in 11Be. Our study is performed in the framework of the ab initio no-core shell model (NCSM). Results obtained using four different, high-precision two-nucleon interactions, in model spaces up to $9\hbar\Omega$ (with matrix dimensions exceeding 1.1×10^9), are shown. We present results on binding energies, excitation spectra, radii, and electromagnetic observables. Furthermore, the recently developed ability to extract cluster form factors from NCSM wave functions is utilized, and the overlap of the 11Be ground state with different 10Be+n channels is studied. Support from the LDRD contract No. 04-ERD-058, and from U.S. Department of Energy, Office of Science, (Work Proposal Number SCW0498) is acknowledged.

1This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

Christian Forssen
LLNL

Date submitted: 13 Jan 2005

Electronic form version 1.4