Inference of Schrodinger Equation from Classical Wave Mechanics[1]

P-I. JOHANSSON, Uppsala Univ., SWE, J.X. ZHENG-JOHANSSON, IOFPR, SWE — A localized oscillatory point charge \(q \) generates in a one-dimensional box electromagnetic waves which for potential field \(V = 0 \) may be generally described by monochromatic plane waves \(\{ \varphi_i = C_K e^{i(KX - \Omega T + \alpha_i)} \} \) of angular frequency \(\Omega \), wavevector \(K = \Omega/c \), and initial phases \(\{ \alpha_i \} \), traveling at the velocity of light \(c \). \(q \) and \(\{ \varphi_i \} \) as a whole is here taken as a particle, which total energy \(E \) and mass \(M \) are given by the basic equations \(E = \hbar \Omega = Mc^2 \), \(2\pi \hbar \) being Planck constant. (For example, \(q = -e \) and \(\hbar \Omega = 511 \) keV give an electron.) \(\{ \varphi_i \} \) as incident and reflected and those from the charge as reflected in the box superimpose into a total wave \(\psi = \sum \varphi_i \) that, as with \(\varphi_i \), obeys the classical wave equation (CWE): \(c^2 \frac{d^2 \psi}{dX^2} = \frac{d^2 \psi}{dT^2} \). If now the particle is traveling at velocity \(v \), then \(\{ \varphi'_i \} \) are Doppler effected and form a total wave \(\psi' = \Phi \Psi \), with \(\Psi = C \sin(K_d X) e^{i\Omega_d T} \) enveloping a beat wave and identifiable as de Broglie wave of angular frequency \(\Omega_d = \Omega(v/c)^2 \), and \(\Phi \) being an undisplaced monochromatic wave. Using \(\psi' \) in CWE (see [1]2004b for incorporation of \(V \neq 0 \)), gives upon decomposition a separate equation describing the particle dynamics, \[-\hbar^2 \frac{\partial^2}{\partial X^2} + V \right] \Psi(X, T) = i\hbar \frac{\partial \Psi(X, T)}{\partial T} \], which is equivalent to Schrödinger’s equation. [1] J. X. Zheng-Johansson and P-I. Johansson, arXiv:Physics/0411134 (2004a); ”Unification of Classical, Quantum and Relativistic Mechanics and of the Four Forces”, (Nova Science, 2004b).