Abstract Submitted for the APR05 Meeting of The American Physical Society

Topology of Electroweak QDMs DILLON SCOFIELD, Dept. of Physics, Oklahoma State Univ./ApplSci, Inc. — Quantum dynamical manifolds (QDMs) are solutions of the quantum dynamical manifold equations (QDMEs) describing mass-spacetimes having specified internal color, gauge, and flavor symmetry. The electron momentum-space manifold (k-space representation of the color Lie algebra su(2) QDM) is topologically orientable, being topologically equivalent to an S^2 -sphere, and the photon k-space manifolds are not orientable being equivalent to a Klein bottle, K^2 . A "new" kind of particle having non vanishing mass-parameter is found. As this parameter vanishes it represents the Dirac neutrino. Because of the dimension of the color algebra is three, when including many-body spacetime effects, there are *exactly* three leptons and lepton neutrinos. By examining the topology of the new neutrino solutions in k-space, an argument for the existence of only lefthanded neutrinos is found. These neutrino manifolds are topologically equivalent to the 2D projective space, RP^2 . Tentative vector boson $(W^+, Z^0(\overline{Z}^0), W^-)$ solutions to 3D su(2) representation color algebra symmetric, 3D SU(2) representation flavor group symmetric QDMEs contain the T^2 torus manifold. Together the electrons (S^2) , neutrinos $(RP^2 : S^2 \# RP^2)$, photons $(K^2 : S^2 \# RP^2 \# RP^2)$ and the vector bosons (T^2) form a topological semigroup $(S^2, T^2, RP^2, \#)$ under the topological connected sum (#). Thus k-space representations of electroweak particles can be joined describing interacting electroweak manifolds.

> Dillon Scofield Dept. of Physics, Oklahoma State Univ./ApplSci, Inc.

Date submitted: 14 Jan 2005

Electronic form version 1.4