Abstract Submitted for the APR05 Meeting of The American Physical Society

High-spin states in the N=50 nucleus 85 Br N. FOTIADES, LANL, J.A. CIZEWSKI, Rutgers, R. KRÜCKEN, T.U. München, R.M. CLARK, P. FALLON, I.Y. LEE, A.O. MACCHIAVELLI, LBNL, J.A. BECKER, L.A. BERNSTEIN, D.P. MCNABB, W. YOUNES, LLNL — High-spin states in 85 Br have been studied following the fission of the 226 Th compound nucleus formed in a fusion-evaporation reaction. The Gammasphere array was used to detect γ -ray coincidences. The level scheme has been extended up to \sim 5 MeV excitation energy. Two states at \sim 2 MeV excitation energy are candidates for the $9/2^+$ state originating from the odd proton occupying the $g_{9/2}$ orbital. The experimental results are compared with predictions of shell model calculations. The results are compared with concurrent studies of 85 Br as a product of deep-inelastic processes in heavy-ion multi-nucleon tranfer reactions published in Ref. [1]. This work has been supported in part by the U.S. Department of Energy under Contracts No. W-7405-ENG-36 (LANL), W-7405-ENG-48 (LLNL) and AC03-76SF00098 (LBNL) and by the National Science Foundation (Rutgers). [1] Y. H. Zhang et al., Phys. Rev. C 70 024301 (2004).

Walid Younes LLNL

Date submitted: 26 Jan 2005 Electronic form version 1.4