Abstract Submitted for the APR05 Meeting of The American Physical Society

Measurements of C_x , C_z and $d_\sigma/d\Omega$ for $K^+\Lambda$ and $K^+\Sigma^0$ Photoproduction REINHARD SCHUMACHER, ROBERT BRADFORD, Carnegie Mellon University, CLAS COLLABORATION — The photoproduction reactions $\gamma + p \to K^+ + \Lambda$ and $\gamma + p \to K^+ + \Sigma^0$ have been measured from threshold to 2.9 GeV photon energy using the CLAS spectrometer at Jefferson Lab. Using a circularly polarized real photon beam, we have obtained first-ever data for the double polarization observables C_x and C_z . These correspond to the transfer of polarization from the photon to the produced hyperon. Results for both hyperons span a wide range of kaon production angles. C_z for the $K^+\Lambda$ reaction shows a striking trend toward complete polarization transfer to the hyperon over a wide range of kaon production angles, while C_x tends towards zero. Several effective Lagrangian reaction models utterly fail to predict these newly-measured observables. We have extended our previous measurements ¹ of the differential cross sections, $d\sigma/d\Omega$, to cover the nearly complete angular range $-0.85 \leq \cos\theta(K_{c.m.}^+) \leq +0.95$ and the extended photon energy range from 2.4 to 2.9 GeV. The results support our previous conclusions that multiple resonance-like contributions are present in $K^+\Lambda$ production between W of 1.8 and 2.0 GeV. t-channel scaling is found to be significant in $K^+\Lambda$ production, but is much less significant in $K^+\Sigma^0$ production.

¹J. W. C. McNabb (CLAS Collaboration), et al., Phys. Rev. C **69** 042201(R) (2004).

Reinhard Schumacher Carnegie Mellon University

Date submitted: 18 Jan 2005

Electronic form version 1.4