Abstract Submitted for the APR06 Meeting of The American Physical Society

The Average Uncertainty of a Three Dimensional Nuclear Oscillator STEWART BREKKE, Northeastern Illinois University (former grad student) — Consider a three dimensional nuclear oscillator in a solid. The position vector is $\mathbf{r} = ((A \cos a))^2 + (B \cos b)^2 + (C \cos c)^2)^{1/2}$, where A,B,C are amplitudes of oscillation. If A=B=C, $\Delta p \ge h/2(\pi)(\Delta r)$, p(av) is the average momentum of the oscillator, a=b=c, then $\Delta p(av) = h/2(\pi)(3\Delta A \cos^2)^{1/2}$, if ΔA is the uncertainty in the amplitude. The maximum $\cos = 1$, minimum $\cos = 0$ and RMS $\cos = 0.707(av$ erage) so max.uncertainty $\Delta p(av) = infinite$, min uncertainty $\Delta p(av) \ge h/10.83\Delta$ A and average uncertainty $\Delta p (av) = h/3.45 \Delta A$. This paper suggests the concept of average uncertainty.

> Stewart Brekke Northeastern Illinois University (former grad student)

Date submitted: 15 Feb 2006

Electronic form version 1.4