Abstract Submitted for the APR06 Meeting of The American Physical Society

Bose-Einstein Statistics and Fermi-Dirac Statistics: A Logical Error TEMUR Z. KALANOV, Home of Physical Problems, Pisatelskaya 6a, 700200 Tashkent, Uzbekistan — The critical analysis of Bose-Einstein statistics and Fermi-Dirac statistics—consequence of Bose's method—is proposed. The main result of the analysis is as follows. (1) In accordance with the definition, Bose-Einstein (B-E) and Fermi-Dirac (F-D) distribution functions $f_{(B-E)}^s$, $f_{(F-D)}^s$ are the average values of the random quantity: $f^s \equiv \varepsilon^s / \varepsilon_1^s$, $\varepsilon^s \equiv \sum_r \varepsilon_r^s p_r^s$, $p_r^s = p_0^s \exp [-(\alpha + \beta \varepsilon_1^s)r]$, $r = 0, 1, \ldots$ (B - E), r = 0, 1 (F - D) where f^s is the average number of the noninteracting monoenergetic identical quantum particles in the *s*-layer cell; ε_1^s is energy of one particle of kind s; p_r^s is the probability that energy takes on the value $\varepsilon_r^s = \varepsilon_1^s r \equiv (\alpha + \beta \varepsilon_1^s)r/\beta$; $1/\beta \equiv T$ is temperature; $\alpha \equiv -\beta\mu$ is degeneration parameter; μ is chemical potential. (2) In accordance with the logic law of identity, $p_r^s \equiv p_r^s, \varepsilon_r^s = \varepsilon_1^s r \equiv (\alpha + \beta \varepsilon_1^s)r/\beta$. Hence, $\alpha \equiv 0$. Thus, $\mu \equiv 0$ and, consequently, Bose-Einstein statistics and Fermi-Dirac statistics represent logical error.

Temur Z. Kalanov Home of Physical Problems, Pisatelskaya 6a, 700200 Tashkent, Uzbekistan

Date submitted: 28 Dec 2005

Electronic form version 1.4