Abstract Submitted for the APR06 Meeting of The American Physical Society

Cosmic Rays, CO₂ Runaway, Sea Level Rise and Severe Global Flooding JOHN T.A. ELY, University of Washington — In CO₂ runaway, the ocean surface layers (which in 1999AD contain, in each 100 m of depth, more CO₂ than the entire atmosphere) can suddenly become a continuous strong source of CO₂ as surface temperatures rise, because the solubility of CO₂ decreases 3 percent per degree Celsius. The evolving CO₂ increases atmospheric greenhouse longwave opacity providing positive feedback accelerating the CO₂ release (without the long time scales of deep ocean processes). Because the present atmospheric CO₂ concentration, 380ppmv, is already so much higher than the 270 ppmv thought to be the preindustrial Pleistocene maximum, it now presents a climate warming forcing so strong that orbital and other climate forcings, which in the past have brought about periodic ice ages, are not able to restore the glaciating mode.

> John T.A. Ely University of Washington

Date submitted: 04 Jan 2006

Electronic form version 1.4