Abstract Submitted for the APR06 Meeting of The American Physical Society

Denoising of Nondestructive Examination Data Using Wavelet, Maximum Entropy, and Limited Differential Methods¹ NICK ECKENSTEIN², JORDAN JOHNSTON³, SHAYNE JOHNSTON, Oklahoma School of Science and Mathematics, AARON DIAZ, Pacific Northwest National Laboratory — A simple and original denoising method, the "limited differential method," has been developed. The algorithm is based on iterated local-pixel-averaging, and is very effective for large-amplitude speckled noise on a smoother background signal. For noise of this type, tests on both noisy two- dimensional images and noisy ultrasonic-scattering data volumes clearly demonstrate the superiority of the method relative to three more complicated standard methods: Fourier processing, wavelet denoising, and maximum-entropy reconstruction.

¹Work supported by Research Corporation ²Present address: Rice University ³Present address: University of Oklahoma

> Shayne Johnston Oklahoma School of Science and Mathematics

Date submitted: 11 Jan 2006

Electronic form version 1.4