Beta-decay of proton-rich nucleus 23Al and astrophysical consequences1 Y.J. ZHAI, V.E. IACOB, T. AL-ABDULLAH, C. FU, J.C. HARDY, N. NICA, H.I. PARK, G. TABACARU, L. TRACHE, R.E. TRIBBLE, Cyclotron Institute, Texas A&M University — We will present the results of a β-decay study that was motivated by a nuclear astrophysics problem. For the first time γ-rays have been observed following the β decay of pure samples of 23Al. We used the 1H(24Mg,$2n$)23Al reaction and the MARS recoil separator of Texas A&M University. β and $\beta - \gamma$ coincidence measurements were made with a fast tape-transport system and β and γ-ray detectors. The experiment allowed us to measure β branching ratios and deduce logft values for transitions to 14 final states in 23Mg, including the isobaric analog state, and from them to determine unambiguously the spin and parity of 23Al ground state to be $J^\pi = 5/2^+$. We will discuss how this excludes the large increase in the radiative proton-capture cross section for the reaction 22Mg(p,γ)23Al at astrophysical energies which was implied by claims that the spin and parity is $J^\pi = 1/2^+$ [1,2], claims that motivated this study in the first place. The reaction is possible candidate to explain why space-based gamma-ray telescopes do not observe γ-rays from the decay of long-lived 22Na formed in ONe novae explosions [3]: a larger cross section would be required to divert significant flux from the A=22 into the A=23 mass chain. [1] X. Z. Cai et al, Phys. Rev. C 65, 024610 (2002). [2] H.-Y. Zhang et al., Chin. Phys. Lett. 19, 1599 (2002). [3] M. Wiescher et al., Astrophys. J. 343, 352 (1989).

1Work supported by DOE.

Livius Trache
Texas A&M University

Date submitted: 14 Jan 2006

Electronic form version 1.4