Measurement and modeling of dissolved radon as a tracer of ground water flow in a well VINCENTE GUISEPPE, University of Maine, C.T. HESS, University of Maine — 222Rn, a naturally occurring radioactive gas produced in the 238U decay series, can build-up in rock and dissolve in ground water. Although 238U and 226Ra dictate the presence of radon in the rock, the dynamics of ground water systems control dissolved radon in a well. We have measured variation of radon concentrations (up to a factor of 5) while drawing water from a well over 2 hours. We have measured the vertical distributions of radon in nine wells and identified the sources of dissolved radon. We designed and built a discrete interval thief sampler, lowered it desired depths and collected a volume of water to be later analyzed for radon using liquid scintillation. Using borehole geophysical instruments, we determined the location of fractures and the flow in the well as a function of depth. We observed higher radon values at both the locations of fractures as well as where flow is high. The core fragments removed during well-drilling were counted using gamma spectroscopy to determine the concentrations of radionuclides in the 238U decay series surrounding the well. A mathematical model of the water mixing and flow out of the well predicts the variation of radon measured over time using the measured vertical radon profiles.

Vincente Guiseppe
University of Maine

Date submitted: 13 Jan 2006