Abstract Submitted for the APR06 Meeting of The American Physical Society

An update on the Majorana-Gerda simulation package (MaGe)¹ MICHAEL MARINO, University of Washington, MAJORANA COLLABORA-TION — The Majorana collaboration is proposing to build an experiment to search for neutrinoless double-beta decay $(0\nu\beta\beta)$ from ⁷⁶Ge using segmented HPGe detectors. The collaboration has partnered with the Gerda collaboration² to create a joint simulation package (MaGe) based upon CERN's Geant4³ simulation engine and Root⁴ analysis software. MaGe provides an adaptable and comprehensive simulation environment to model detector response, pulse formation, and background processes for a variety of detector parameters and geometries. This presentation will include an introduction to the important components of MaGe and present the latest results for background simulations of the Majorana reference design as well as its expected sensitivity to $0\nu\beta\beta$ decay of ⁷⁶Ge. A complementary talk will be given addressing verification of the simulation package.

Michael Marino University of Washington

Date submitted: 13 Jan 2006 Electronic form version 1.4

¹This work is supported by the DOE Office of Nuclear Physics.

 $^{^2{\}rm Gerda}$ Collaboration, Proposal to LNGS, available (12 Jan 2006) http://www.mpihd.mpg.de/ge76/proposal_21sept.pdf

³Geant4 - A Simulation Toolkit, Nuclear Instruments and Methods A 506 (2003) 250-303

 $^{^4\}mathrm{ROOT}$ - An Object Oriented Data Analysis Framework, Nuclear Instruments and Methods A 389 (1997) 81-86