K^* photoproduction off the proton at CLAS1 ISHAQ HLEIQAWI, KEN HICKS, Ohio University, CLAS COLLABORATION — The photoproduction of vector mesons has previously focused on the nonstrange sector, with ρ, ω or ϕ mesons in the final state. The lightest vector meson with nonzero strangeness is the K^* of which little is known for photoproduction. The large acceptance of the CLAS detector makes it possible to capture both K^* decay products, the pion and the kaon. In this talk we will show differential cross sections for the $K^*\Sigma^+$ final state over photon energies ranging from about 1.8 to 3.0 GeV. These data are compared with a theoretical model by Zhao et al. using a quark-model for the K^*-baryon couplings. Our data show that the forward-angle data are well described by the t-channel, hence providing constraints for the $K^*\Sigma N$ coupling constant. At larger angles, the s-channel is well described by the model of Zhao et al. over a range of angles and photon energies. The K^* couplings determined from our data will more tightly constrain calculations for scalar kaon production, where K^* exchange occurs as a virtual particle in the t-channel.

1supported by NSF grant PHY-0244999

Kenneth Hicks
Ohio University

Date submitted: 14 Jan 2006

Kenneth Hicks
Ohio University

Date submitted: 14 Jan 2006

Electronic form version 1.4