Statistical model calculations of heavy-ion induced fusion-fission reactions
SCOTT MCCALLA, JOHN LESTONE, Los Alamos National Laboratory

— Statistical model calculations of heavy-ion induced fusion-fission reactions are performed with fission barrier heights, and potential curvatures, at both the equilibrium and saddle points, determined as a function of the total spin, J, the spin about the symmetry axis, K, and the nuclear temperature, T, in a self-consistent manner. The fission saddle points are correctly determined by finding the minimum in the system entropy as a function of deformation along the fission path. It is shown that if the saddle points are incorrectly determined using the turn points in the $T=0$ potential energy surfaces, that erroneous conclusions can be made regarding the viscosity of nuclear matter. When fission is modeled correctly, vast amounts of heavy-ion induced fission-probability and particle-emission data are consistent with the fission of fully equilibrated systems with the nuclear viscosity determined via the surface plus window dissipation model of Nix and Sierk.

Scott McCalla
Los Alamos National Laboratory

Date submitted: 14 Jan 2006

Electronic form version 1.4