Abstract Submitted for the APR07 Meeting of The American Physical Society

Anomalous behaviour of the 2^+ mixed-symmetry state in $^{94}{\rm Zr}^1$ NICO ORCE, ESMAT ELHAMI, SHARMISTHA MUKHOPADHYAY, SADIA CHOUDRY, MARCUS SCHECK, MARCUS MCELLISTREM, STEVE YATES, University of Kentucky — The low-spin structure of $^{94}{\rm Zr}$ has been studied with the $({\rm n,n'}\gamma)$ reaction, and branching ratios, lifetimes, multipolarities and spin assignments were determined. The 2^+_2 state at 1671.4 keV has been identified as the lowest mixed-symmetry state in $^{94}{\rm Zr}$. The 752.5 keV transition from this state to the 2^+_1 level has a large B(M1) value of 0.33 (5) μ^2_N , and the B(E2) of the transition to the ground state has an unusually large value of 8(1) W.u. The M1 transition strength is in agreement with IBM-2 predictions in the U(5) vibrational limit, whereas the large B(E2; $2^+_{1,MS} \rightarrow 0^+_1$) value significantly exceeds the E2 strength predicted by the IBM-2. For the first time, the $2^+_{1,MS} \rightarrow 0^+_1$ E2 transition is observed to have a larger E2 transition strength than the $2^+_1 \rightarrow 0^+_1$ decay.

¹This material is based upon work supported by the U.S. National Science Foundation under Grant No. PHY-0354656

Nico Orce University of Kentucky

Date submitted: 24 Nov 2006 Electronic form version 1.4