Lifetimes of excited states in neutron rich 22F

SANGJIN LEE, S.L. TABOR, A. AGUILAR, P.C. BENDER, T.A. HINNERS, C.R. HOFFMANN, M. PERRY, VANDANA TRIPATHI, Florida State University — 22F was populated from the 9Be(14C,p) reaction at $E_{\text{lab}} = 22$ MeV at the Florida State University Superconducting Accelerator Laboratory. An $1848 \mu g/cm^2$ thick 9Be target stopped both the recoiling 22F nuclei and the 14C beam without slowing the protons from the reaction very much. These protons were detected and identified with a segmented $\Delta E-E$ Si particle telescope. γ rays were measured using Compton-suppressed high-purity germanium detectors at angles of $35^\circ, 90^\circ$, and 145° relative to the beam. Proton-γ and proton-$\gamma-\gamma$ coincidences were used to analyze the data. Eight previously known γ-ray transitions were confirmed and three new γ-ray transitions were found. Lifetimes of 7 excited states in 22F were measured using the Doppler-shift Attenuation Method (DSAM). This work was supported in part by the National Science Foundation.