Abstract Submitted for the APR07 Meeting of The American Physical Society Detailed level scheme of 92 Rh and its relevance to the decay of 94m Ag 1 O.L. PECHENAYA, C.J. CHIARA, D.G. SARANTITES, W. REVIOL, R.J. CHARITY, Washington University, M.P. CARPENTER, R.V.F. JANSSENS, C.J. LISTER, D. SEWERYNIAK, S. ZHU, Argonne National Laboratory, L.-L. ANDERSSON, E.K. JOHANSSON, D. RUDOLPH, Lund University — The level scheme of 92 Rh was studied via the 40 Ca(58 Ni, αpn) reaction in an experiment utilizing the Gammasphere, Neutron Shell, and Microball arrays for detection of γ rays, neutrons, and charged particles, respectively. The level scheme of 92 Rh reported in [1] has been modified and extended to higher spins, and angular distributions have been measured for most of the γ rays observed. This information is relevant to the likelihood of the reported two-proton decay from the 6.7-MeV 21^+ isomer in 94 Ag to excited states in 92 Rh [2]. The evidence for that decay mode hinges on the claimed observation of several 92 Rh transitions in coincidence with two protons. Our new results for 92 Rh place severe constraints on the amount of angular momentum removed by a possible two-proton decay of 94m Ag. - [1] D. Kast et al., Z. Phys. **A356**, 363 (1997). - [2] I. Mukha et al., Nature 439, 298 (2006). Olga Pechenaya Washington University Date submitted: 05 Jan 2007 Electronic form version 1.4 ¹Supported by DOE Grant Number DE-FG02-88ER-40406