Abstract Submitted for the APR07 Meeting of The American Physical Society

High-spin states in ¹³⁵Xe N. FOTIADES, R.O. NELSON, M. DEVLIN, LANL, J.A. CIZEWSKI, Rutgers, R. KRÜCKEN, T.U.Munchen, R.M. CLARK, P. FALLON, I.Y. LEE, A.O. MACCHIAVELLI, LBNL, J.A. BECKER, W. YOUNES, LLNL, T. ETHVIGNOT, T. GRANIER, Bruyères-le-Châtel — Investigation of highspin states in ¹³⁵Xe is important for comparison with shell-model calculations because this isotope has only one neutron hole in the N=82 shell and, hence, a relatively limited number of single-particle configurations at low excitation energies. The structure of ¹³⁵Xe was studied in two experiments: i) as a fission fragment following the fission of the ²²⁶Th compound nucleus formed in a fusion-fission reaction (¹⁸O at 91 MeV on ²⁰⁸Pb) with the GAMMASPHERE spectrometer at LBNL, and ii) as an evaporation residue in the 136 Xe $(n,2n\gamma)^{135}$ Xe reaction with the GEANIE spectrometer at LANL. The level scheme above the 11/2⁻, 527-keV isomer (from the odd neutron in the $h_{11/2}$ orbital) was established up to 3710-keV excitation energy. This is the first observation of negative-parity high-spin states in this isotope. A strong sequence was assigned to ¹³⁵Xe and forms the yrast decay path including the $15/2^-$ and $19/2^-$ states. A much weaker sequence of γ -rays was tentatively assigned to 135 Xe and is a candidate for the off-yrast sequence that includes the $13/2^-$ and $17/2^-$ states, expected in the weak coupling of the $h_{11/2}$ neutron to the even-A core. The results are compared with predictions from shell-model calculations.

> Ron Nelson LANL

Date submitted: 11 Jan 2007 Electronic form version 1.4