Coulomb Excitation of Odd-A Neutron-Rich Radioactive Beams Near ^{132}Sn

CHANG-HONG YU, C. BAKTASH, J. BEENE, A. GALINDO-URIBARRI, C.J. GROSS, P.A. HAUSLADEN, J.F. LIANG, J. PAVAN, D.C. RADFORD, Oak Ridge National Laboratory (supported by U.S. DOE contract # DE-AC05-00OR22725), J.C. BATCHELDER, UNIRIB, C. BINGHAM, M. DANCHEV, Univ. of Tennessee, W. KROLAS, E. PADILLA, JIHIR — Coulomb excitation of even-even neutron-rich nuclei near ^{132}Sn has been a tremendous success at the Holifield Radioactive Ion Beam Facility (HRIBF). This paper reports the extension of such studies to odd-A neutron-rich nuclei using RIBs provided by HRIBF. By using a 400-MeV A=129 radioactive beam and ^{50}Ti targets, excited states in ^{129}Sb and ^{129}Te were populated by Coulomb excitations. The HRIBF CLARION, Hyball, and a Bragg detector were used to detect gamma rays, charged particles, and to monitor the beam composition, respectfully. Doppler corrected (event-by-event) gamma rays were identified as mainly belonging to ^{129}Sb and ^{129}Te, the main components of the mixed beam. Data analysis resulted in $B(E2)$ values for four transitions in ^{129}Sb. These values were compared to $B(E2)$’s measured [1] in ^{123}Sb, the heaviest odd-A Sb isotope for which $B(E2)$ measurements exist prior to this study, and showed similar trends between ^{123}Sb and ^{129}Sb. Phenomena revealed in the comparison call for further theoretical investigations. [1] K.C. Jain, et al., Phys. Rev. C40, (1989) 2400.

Chang-Hong Yu
Oak Ridge National Laboratory

Date submitted: 11 Jan 2007