Abstract Submitted for the APR07 Meeting of The American Physical Society

First Measurement of the Cascade Transition via the 6.049-MeV State of ¹⁶O in the ¹²C(α, γ)¹⁶O Reaction¹ CATALIN MATEI², C.R. BRUNE, Ohio University, L. BUCHMANN, D.A. HUTCHEON, C. RUIZ, J. CAGGIANO, A. LAIRD, Z.H. LI, A. OLIN, D. OTTEWELL, G. RUPRECHT, M. TRINCZEK, C. VOCKENHUBER, TRIUMF, J. D'AURIA, M. LAMEY, C. WREDE, Simon Fraser U., A.A. CHEN, J. PEARSON, McMaster U., W.R. HANNES, U. of Kostanz — The cascade through the 6.049-MeV state of ¹⁶O has rarely been discussed as contributing to the ¹²C $(\alpha, \gamma)^{16}$ O cross section at low energies largely due to experimental difficulties in observing this transition. We report here first measurements of this transition in ${}^{12}C(\alpha,\gamma){}^{16}O$ using the DRAGON separator facility at TRIUMF. The experiment was performed in inverse kinematics with an incident ¹²C beam on a windowless ⁴He gas target. The coincidence setup included a BGO array around the gas target and a DSSSD detector for the detection of ¹⁶O recoils. The acceptance of DRAGON including the BGO array has been simulated in GEANT as well as measured directly. The transition strength has been derived and analyzed in the R- matrix formalism. We find an extrapolated value of $S_{6.05}(300) = 25 \pm 16$ keVb showing that this transition is likely the most important cascade contribution for ¹²C $(\alpha, \gamma)^{16}$ O.

¹This work was supported by NSERC Canada and US DOE. ²Present address: Oak Ridge Associated Universities, Oak Ridge, TN

> Catalin Matei Ohio University

Date submitted: 16 Jan 2007

Electronic form version 1.4