APR07-2007-000415

Abstract for an Invited Paper for the APR07 Meeting of the American Physical Society

Improved Test of the Equivalence Principle STEPHAN SCHLAMMINGER, University of Washington

We present results for the most precise lab test of the equivalence principle to date. Our experiment uses a torsion pendulum with beryllium and titanium test bodies arranged in a composition dipole and is mounted on a turntable that rotates with constant angular velocity. A violation of the equivalence principle would result in a differential acceleration of the two materials toward a source mass. We measure a differential acceleration of $1 \pm 6 \times 10^{-15} m/s^2$ and analyze our data toward a variety of source masses allowing us to constrain the violation of the equivalence principle for ranges of one meter to infinity. In collaboration with Todd Wagner, Ki-Young Choi, Jens Gundlach, and Eric Adelberger, University of Washington.