Abstract Submitted for the APR07 Meeting of The American Physical Society

Selection of Fully Reconstructed Hadronic B_s^0 Decays for the Observation of B_s^0 - \bar{B}_s^0 Oscillations BRUNO CASAL, Universidad de Cantabria, CDF COLLABORATION — We present the neural network based selection of hadronic B_s^0 decay modes used for the time-dependent measurement of B_s^0 - \bar{B}_s^0 oscillation frequency Δm_s . Using a data sample of 1 fb⁻¹ of $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV collected with the CDF II detector at the Fermilab Tevatron Collider, we find signals of 5600 fully reconstructed hadronic B_s^0 decays. We measure the probability as a function of proper decay time that the hadronic B_s^0 candidate decays with the same or opposite flavor as the flavor at production. We find a signal for B_s - \bar{B}_s oscillations and measure $\Delta m_s = 17.77 \pm 0.10$ (stat) ± 0.07 (syst) ps⁻¹. From this we extract $|V_{td}/V_{ts}| = 0.2060 \pm 0.0007$ (exp) + 0.0081 - 0.0060 (theor).

Manfred Paulini Carnegie Mellon University

Date submitted: 11 Jan 2007 Electronic form version 1.4