Abstract Submitted for the APR07 Meeting of The American Physical Society

Alpha-cluster resonances in 23 Na near 19 F+ α threshold. B.W. GREEN, G.V. ROGACHEV, E. JOHNSON, A.M. CRISP, K.W. KEMPER, Dept. of Physics, Florida State University, V.Z. GOLDBERG, A. MUKHAMEDZHANOV, Cyclotron Institute, Texas A&M University, M. LA COGNITA, R.G. PIZZONE, S. ROMANO, C. SPITALERI, A. TUMINO, Labratori Nazionali del Sud-INFN, Catania, Italy — Abundance of ¹⁹F in AGB stars is enhanced by a factor of 2-30 with respect to the solar abundance [1]. This observation provides strong evidence that ¹⁹F is produced in the interior of AGB stars. It was shown in [2] that the final abundance of ¹⁹F depends strongly on the ¹⁹F(α ,p) reaction rate. No experimental data is available for the $^{19}\text{F}(\alpha,p)$ reaction cross section below $E_{\alpha}=1.3$ MeV. Extrapolation of the $^{19}F(\alpha,p)$ cross section down to the relevant energy range is uncertain due to the unknown properties of relevant resonances in ²³Na. It is the main goal of this work to identify resonances in ²³Na, which may be important for the $^{19}F(\alpha,p)$ reaction. Resonances in ^{23}Na were populated with a $^{19}F(^6Li,d)^{23}Na$ reaction, using a 23 MeV ⁶Li beam. Deuterons were detected at forward angles in coincidence with protons from the proton decay of ²³Na resonances. Angular correlation between deuterons and protons allows for spin-parity assignments for the populated resonances while the magnitude of the ¹⁹F(⁶Li,d) cross section gives information regarding the α spectroscopic factor of the ²³Na. [1] A. Jorissen, et al., A&A, 261 (1992) 164. [2] M. Lugaro, et al., ApJ, 615 (2004) 934.

> Bert Green FSU

Date submitted: 15 Jan 2007 Electronic form version 1.4