Abstract Submitted for the APR07 Meeting of The American Physical Society

The level structure of ¹⁹Ne via measurement of the 2 H(18 F, $\alpha+{}^{15}$ O)n reaction. A.S. ADEKOLA, C.R. BRUNE, Z. HEINEN, M.J. HORNISH, T.N. MASSEY, A.V. VOINOV, Ohio U., D.W. BARDAYAN, J.C. BLACKMON, C.D. NESARAJA, M.S. SMITH, Oak Ridge Nat. Lab., A. CHAE, C. DOMIZIOLI, Z. MA, B. MOAZEN, U. of Tenn., A.E. CHAMPAGNE, D.W. VISSER, UNC - Chapel Hill, U. GREIFE, R. LIVESAY, M. PORTER - PEDEN, Col. School of Mines, M. JOHNSON, Oak Ridge Assoc. U., K.L. JONES, S.D. PAIN, J.S. THOMAS, Rutgers, R.L. KOZUB, J.F. SHRINER, N.D. SMITH, Tenn. Tech. — The ¹⁸F(d,n)¹⁹Ne and ¹⁸F(d,p)¹⁹F reactions have been measured simultaneously at $E_{c.m.} = 14.9 \text{ MeV}$ at ORNL's HRIBF with a radioactive ^{18}F beam. The ¹⁹Ne excited states near the proton threshold are potentially important for the 18 F(p, α) reaction rate in novae. These states decay by breakup into $\alpha + ^{15}$ O which were detected in coincidence with position-sensitive $E-\Delta E$ telescopes. The neutron (proton) angular distributions for states in ¹⁹Ne (¹⁹F) were extracted using momentum conservation. Information on the spins and spectroscopic strengths of these states will be presented and ¹⁹Ne – ¹⁹F mirror symmetry will be discussed.

¹This work is supported in part by the U. S. Department of Energy and National Science Foundation

A.S. Adekola Ohio University

Date submitted: 15 Jan 2007 Electronic form version 1.4