A microwave cavity search for axions

D.B. TANNER, University of Florida

The mass of the axion, a hypothetical elementary particle proposed as a solution to the “strong-CP” problem, is constrained by experimental and astrophysical considerations to a range where the axion is a very plausible cold dark matter candidate. This weakly-interacting dark matter particle could constitute the halo of our galaxy. In the Axion Dark Matter eXperiment (ADMX), halo axions flow through a microwave resonant cavity permeated by a static magnetic field, where some convert into microwave photons. These photons are detected by an ultralow-noise receiver. The ADMX Collaboration has set limits on the axion-to-photon coupling and/or local axion halo mass density for axion mass between 1.9 and 3.3 \(\mu \text{eV} \). Consideration of phase-space structure of the axion flow, which predicts extremely sharp peaks in the axion kinetic-energy spectrum, improves the limit. Presently underway is an upgrade to the experiment, using SQUID RF amplifiers, which will improve the performance by more than a factor of 10.

\(^{1}\)Supported by the U.S. DOE contracts DE-FG02-97ER41029 at UF and W-7405-ENG-48 at LLNL.