Abstract Submitted for the APR07 Meeting of The American Physical Society

Polarization Enhancement of ¹²⁹Xe in TEMPO-Doped Xenon at 2.0K and 0.31 Tesla. D.N. BALAKISHIYEVA, J.W. MCNABB, C. BEDNARSKI-MEINKE, A. HONIG, Syracuse University — Enhancements of ¹²⁹Xe NMR signals up to 300 times their equilibrium value at temperature 2.0K and magnetic field ~ 0.3 T, corresponding to a spin polarization >1%, have been obtained in solid xenon with TEMPO¹ impurity concentrations near 10¹⁸ /cm³. This dynamic polarization results from interaction of the nuclear Zeeman spin reservoir with the electron spin-spin reservoir², while irradiating near the electron Zeeman resonance frequency (~8.7 GHz) with up to 500 mW of microwave power. The mixing procedures in which TEMPO is introduced into liquid Xenon prior to freezing, and the electron spin resonance line shapes which correlate with dynamic polarization enhancements are described. At higher magnetic fields up to ~ 5 T, and temperatures still within the 1 - 2K range, the results suggest a route for fast and copious production of hyperpolarized ¹²⁹Xe, with its multitude of applications³. 1. Pluckthun, M. et al, Nucl. Instrum. and Meth. in Phys. Res. A 400, 122 (1997). 2. Abragam, A. and M. Goldman, Rep. Prog. Phys. 41, 395 (1978). 3. Oros, A-M and N. J. Shah, Phys. Med. Biol. <u>49</u>, R105 (2004).

D.N. Balakishiyeva

Date submitted: 15 Jan 2007 Electronic form version 1.4