Abstract Submitted for the APR07 Meeting of The American Physical Society

Search for excited states in ¹⁰¹Sn¹ D. SEWERYNIAK, M.P. CARPEN-TER, S. GROS, R.V.F. JANSSENS, T.L. KHOO, T. LAURITSEN, C.J. LISTER, D. PETERSON, A. ROBINSON, X. WANG, S. ZHU, Argonne National Laboratory, G. LOTAY, P.J. WOODS, University of Edinburgh, A.A. HECHT, N. HOTELING, W.B. WALTERS, University of Maryland — Single-particle excitations near closed shells are critical in understanding nuclear structure. Single-particle energies in the doubly-magic self-conjugate ¹⁰⁰Sn nucleus are not known. Studies of nuclei around ¹⁰⁰Sn are at the current sensitivity limit. A search for gamma-ray transitions in $^{101}\mathrm{Sn}$, which contains only one neutron outside of the $^{100}\mathrm{Sn}$ core, was carried out at the Argonne Tandem-Linac Accelarator System. ¹⁰¹Sn nuclei were produced using the ⁴⁶Ti(⁵⁰Cr,3n)¹⁰¹Sn reaction with a cross section of about 50 nb. Beta-delayed protons with energies and decay times consistent with previous ¹⁰¹Sn decay studies were observed in a Double-Sided Si Strip Detector at the focal plane of the Argonne Fragment Mass Analyzer. In-beam gamma rays were detected in the GAMMAS-PHERE array of Ge detectors and were correlated with ¹⁰¹Sn beta-delayed protons. Implications of the ¹⁰¹Sn gamma-ray spectrum for the structure of ¹⁰¹Sn, ¹⁰⁰Sn and neighboring nuclei will be discussed.

¹supported by the U.S. DOE, Office of Nuclear Physics under contract No. DE-AC02-06CH11357

Dariusz Seweryniak Argonne National Laboratory

Date submitted: 16 Jan 2007 Electronic form version 1.4