Search for excited states in ^{101}Sn

D. Seweryniak, M.P. Carpenter, S. Gros, R.V.F. Janssens, T.L. Khoo, T. Lauritzen, C.J. Lister, D. Peterson, A. Robinson, X. Wang, S. Zhu, Argonne National Laboratory, G. Lotay, P.J. Woods, University of Edinburgh, A.A. Hecht, N. Hoteling, W.B. Walters, University of Maryland — Single-particle excitations near closed shells are critical in understanding nuclear structure. Single-particle energies in the doubly-magic self-conjugate ^{100}Sn nucleus are not known. Studies of nuclei around ^{100}Sn are at the current sensitivity limit. A search for gamma-ray transitions in ^{101}Sn, which contains only one neutron outside of the ^{100}Sn core, was carried out at the Argonne Tandem-Linac Accelerator System. ^{101}Sn nuclei were produced using the $^{46}\text{Ti}(^{50}\text{Cr},3\text{n})^{101}\text{Sn}$ reaction with a cross section of about 50 nb. Beta-delayed protons with energies and decay times consistent with previous ^{101}Sn decay studies were observed in a Double-Sided Si Strip Detector at the focal plane of the Argonne Fragment Mass Analyzer. In-beam gamma rays were detected in the GAMMASPHERE array of Ge detectors and were correlated with ^{101}Sn beta-delayed protons. Implications of the ^{101}Sn gamma-ray spectrum for the structure of ^{101}Sn, ^{100}Sn and neighboring nuclei will be discussed.

1Supported by the U.S. DOE, Office of Nuclear Physics under contract No. DE-AC02-06CH11357

Dariusz Seweryniak
Argonne National Laboratory

Date submitted: 16 Jan 2007

Electronic form version 1.4